Search results for " methods: observational"

showing 4 items of 4 documents

X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

2012

Aims. The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods. We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34− 7k eV energy band by adopting the latest release of the APED database. Results. The SphinX …

Physics010504 meteorology & atmospheric sciencesSpectrometerX-rayBremsstrahlungAstronomy and AstrophysicsPlasmaAstrophysics01 natural sciencesCoronaSpectral lineSun: corona methods: observational techniques: spectroscopicStars13. Climate actionSpace and Planetary Science0103 physical sciencesCalibration010303 astronomy & astrophysics0105 earth and related environmental sciencesAstronomy & Astrophysics
researchProduct

FRIPON: a worldwide network to track incoming meteoroids

2020

Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receiver…

DYNAMICS[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]MeteorsComputer scienceRadio receiver[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Surveys010502 geochemistry & geophysicsTrack (rail transport)01 natural sciencesMeteorites meteors meteoroidslaw.inventionPlanets and planetary system[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingMethods: observationallaw[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]meteoroids010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSObservational methodsEarth and Planetary Astrophysics (astro-ph.EP)meteoroids -surveys -methods: observational -interplanetary medium[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGIN[INFO.INFO-AO]Computer Science [cs]/Computer Arithmeticmeteorites meteors meteoroids – surveys – methods: observational – interplanetary mediumMeteoroidsRECOVERYORBITMeteoriteFully automatedInterplanetary medium; Meteorites meteors meteoroids; Methods: observational; Surveys[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Astrophysics - Instrumentation and Methods for Astrophysics[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingFLUXReal-time computingfripon[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]FOS: Physical sciencesContext (language use)CAMERA[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE][SPI.AUTO]Engineering Sciences [physics]/Automatic[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology0103 physical sciencesFIREBALL NETWORKobservational [Methods]meteorsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesMeteoroidINNISFREE METEORITE[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Astronomy and AstrophysicsMETEORITE FALLMeteorites meteors meteoroidCamera networkSpace and Planetary Science[SDU]Sciences of the Universe [physics]Interplanetary spaceflightmeteroids trackingmeteoroids - surveys - methods: observationalSYSTEMInterplanetary mediumAstrophysics - Earth and Planetary AstrophysicsMeteorites
researchProduct

Searching for pulsed emission from XTE J0929-314 at high radio frequencies

2009

The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicspulsars: general methods: data analysis methods: observational X-rays: binaries stars: neutronMillisecondAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminosityInterstellar mediumNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsX-ray pulsar
researchProduct

Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board Rosetta

2016

Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov¿Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness a…

67P/Churyumov-GerasimenkoBrightness010504 meteorology & atmospheric sciences530 PhysicsInfraredCometdata analysis[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]Narrow angleComets: individual: 67P/Churyumov-Gerasimenko; Methods: data analysis; Methods: numerical; Methods: observationalFOS: Physical sciencesEquinoxAstrophysics01 natural sciencesAstronomi astrofysik och kosmologiMethods: observationalMethods: data analysisindividual: 67P/Churyumov-Gerasimenko [Comets]0103 physical sciencesAstronomy Astrophysics and Cosmologyobservational [Methods]cometsdata analysis [Methods]010303 astronomy & astrophysics0105 earth and related environmental sciencesobservational method: numerical methodPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Comets: individual: 67P/Churyumov-Gerasimenkomethods: data analysis methods: numerical methods: observational comets: individual: 67P/Churyumov–Gerasimenkonumerical [Methods]biology[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Methods: numerical520 AstronomyAstronomyAstronomy and Astrophysics620 Engineeringbiology.organism_classificationOn boardSpace and Planetary Science[SDU]Sciences of the Universe [physics]Sublimation (phase transition)QB651OsirisAstrophysics - Earth and Planetary Astrophysics
researchProduct